Intramolecular hydroamination/cyclisation of aminoallenes mediated by a cationic zirconocene catalyst: a computational mechanistic study.

نویسنده

  • Sven Tobisch
چکیده

The complete sequence of steps of a tentative catalytic cycle for intramolecular hydroamination/cyclisation (IHC) of 4,5-hexadien-1-ylamine (1) by a prototypical cationic [Cp(2)ZrCH(3)](+) zirconocene precatalyst (2) has been examined by employing a gradient-corrected DFT method. The predicted smooth overall reaction energy profile is consistent with the available experimental data, thereby providing further confidence in the proposed mechanism. Following activation of the precatalyst by protonolytic cleavage of the Zr-Me bond, the catalytically active amidoallene-Zr complex undergoes addition of an allenic C[double bond, length as m-dash]C linkage across the Zr-N sigma-bond. The alternative exo- and endocyclic pathways show similar probabilities for the sterically less encumbered reactants {1 + 2} investigated herein. However, steric factors are expected to exert control on the regioselectivity of ring closure. On the other hand, the metathesis-type transition states for subsequent protonolysis are indicated to be less sensitive to steric demands. Formation of the six-membered azacycle-Zr intermediate through intramolecular C[double bond, length as m-dash]C insertion into the Zr-N sigma-bond is predicted to be turnover limiting. The factors that govern the regioselectivity of the aminoallene IHC have been elucidated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic investigation of organolanthanide-mediated hydroamination of aminoallenes: a comprehensive computational assessment of various routes for allene activation.

The present mechanistic study comprehensively explores alternative scenarios for activation of the amine-linked allene C=C linkage toward nucleophilic amido attack in the intramolecular hydroamination of a prototypical 1,3-disubstituted aminoallene by a well-characterised samarocene-amido catalyst. Firstly, the non-insertive mechanism by Scott featuring C-N ring closure with concomitant amino p...

متن کامل

Origin of diastereoselectivity in the organolanthanide-mediated intramolecular hydroamination/cyclisation of aminodienes: a computational exploration of constrained geometry CGC-Ln catalysts.

The regulation of ring-substituent diastereoselectivity in the intramolecular hydroamination/cyclisation (IHC) of alpha-substituted aminodienes by constrained geometry CGC-lanthanide catalysts (CGC=[Me(2)Si(eta(5)-Me(4)C(5))(tBuN)](2-)) has been elucidated by means of a reliable DFT method. The first survey of relevant elementary steps for the 1-methyl-(4E,6)-heptadienylamine substrate (1) and ...

متن کامل

Mechanistic elucidation of the yttrium(III)-catalysed intramolecular aminoalkene hydroamination: DFT favours a stepwise σ-insertive mechanism.

A comprehensive computational mechanistic study regarding intramolecular hydroamination (HA) of aminoalkenes mediated by a recently reported class of highly active cyclopentadienyl-bis(oxazolinyl)borate {Cpo}Y(III) alkyl compounds is presented. Two distinct mechanistic pathways of catalytic HA mediated by rare earth and alkaline earth compounds have emerged over the years, describing amidoalken...

متن کامل

A bis(phosphinimino)methanide lanthanum amide as catalyst for the hydroamination/cyclisation, hydrosilylation and sequential hydroamination/hydrosilylation catalysis.

[La[N(SiHMe2)2]2[CH(PPh2NSiMe3)2]], which was obtained via an amine elimination starting from [CH2(PPh2NSiMe3)2] and [La[N(SiHMe2)2]3(THF)2], was used as catalyst for the hydroamination/cyclisation, the hydrosilylation and the sequential hydroamination/hydrosilylation reaction.

متن کامل

Base-catalysed asymmetric hydroamination/cyclisation of aminoalkenes utilising a dimeric chiral diamidobinaphthyl dilithium salt.

A dimeric proline derived diamidobinaphthyl dilithium salt represents the first example of a chiral main group metal based catalyst for asymmetric hydroamination/cyclisation reactions of aminoalkenes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dalton transactions

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2006